Extractive Metallurgy Division - The Viscosity of Liquid Zinc by Oscillating a Cylindrical Vessel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 741 KB
- Publication Date:
- Jan 1, 1965
Abstract
An oscillational vis cometer has been constructed to measure the viscosity of liquid metals and alloys to 800°C. An enclosed cylindrical interface surrounds the molten sample avoiding the free surface condition found in many previous measurements. Standardization of the apparatus with mercury has verified the use of Roscoe's formula in the calculation of the viscosity. Operation of the apparatus at higher temperatures was also checked using molten lead. Extensive measurements on five different samples of zinc, of not less than 99.99 pct purity, indicate i) impurities at this level do not influence the viscosity and ii) the apparatus is capable of giving reproducible data. The variation of the viscosity ? with absolute temperature T is adequately expressed by Andrade's exponential relationship ?V1/3 = AeC/VT , where A and C are constants and V is the specific volume of the liquid. The values of A and C are given as 2.485 x 10-3 and 20.78, 2.444 x 10-3 and 88.79, and 2.169 x 10-3 and 239.8, respectively, for mercury, lead, and zinc. The error of measurement is assessed to be about 1 pct. Prefreezing phenomena in the vicinity of the freezing point of the zinc samples were found to be absent. AS part of an over-all program of research on various phases of melting and casting nonferrous alloys, a systematic study of some physical properties of liquid metals and their alloys was undertaken in the laboratories of the Physical Metallurgy Division.1,2,3 The most recent phase of this work, on zinc and some zinc-base alloys, was carried out in cooperation with the Canadian Zinc and Lead Research Committee and the International Lead-Zinc Research Organization. One of the properties investigated was viscosity and the present paper gives results on pure zinc; the second part, on the viscosity of some zinc alloys, will be reported separately. Experimental interest in the viscosity of liquid metals has virtually been confined to the past 40 years. The capillary technique was already established as the primary method for the viscosity of fluids in the vicinity of room temperature; all relevant experimental corrections were known and an absolute accuracy of 1 to 2 pct was possible. Ap- plication of the capillary method to liquid metals creates a number of exacting requirements to manipulate a smooth flow of highly reactive liquid through a fine-bore tube. Consequently, the degree of precision usually achieved in the high-temperature field rarely compares with measurements on aqueous fluids near room temperature. However, the full potential of the capillary method has yet to be explored using modern experimental techniques. As an alternative, many investigators in this field have preferred to select the oscillational method. Unfortunately, the practical advantages are somewhat offset by the inability of the hydrodynamic theory to realize a rational working formula for the calculation of the viscosity. In attempting to overcome this restriction many investigators have employed calibrational procedures, even to the extent of selecting an arbitrary formula for use with a given shaped interface. However, where calibration cannot be founded on well-established techniques, the contribution of such experiments to the general field of viscometry is questionable. A critical appraisal of the viscosity data existing for pure liquid metals reveals a somewhat discordant situation where considerable effort is still required to establish reproducible and reliable values for the low-melting point metals. The means of rectifying this situation have gradually evolved in recent years. Here, the theory of the oscillational method has undergone major advances for both the spherical and cylindrical interfaces. The basic concepts of verschaffelt4 governing the oscillation of a solid sphere in an infinite liquid have been adequately expressed by Andrade and his coworkers.5,6 Employing a hollow spherical container and a formula, which had been extensively verified by experiments on water, absolute measurements on the liquid alkali metals were obtained. The extension of this approach to the more common liquid metals has been demonstrated by culpin7 and Rothwel18 where much ingenuity was used to surmount the problem of loading the sample into the delicate sphere. Because of the elegant technique required to construct a hollow sphere, the cylindrical interface holds recognition as virtually the ideal shape. On the other hand, loss of symmetry in one plane increases the complexity of deriving a calculation of the viscosity. The contributions of Hopkins and Toye9 and Roscoe10 have markedly improved the potential use of the cylindrical interface in liquid-metal viscometry. The relatively simple experi-
Citation
APA:
(1965) Extractive Metallurgy Division - The Viscosity of Liquid Zinc by Oscillating a Cylindrical VesselMLA: Extractive Metallurgy Division - The Viscosity of Liquid Zinc by Oscillating a Cylindrical Vessel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.