Extractive Metallurgy Division - The Thermodynamic Behavior of Oxygen in Liquid Binary-Metallic Solvents - A Simple Solution Model

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 2053 KB
- Publication Date:
- Jan 1, 1965
Abstract
A simple solution model, based upon the formation of molecular species, is developed for strongly electronegative dilute solutes in liquid binary-metallic solvents. Two approximations are considered for the relative concentrations of the species: the random and the quasi-chemical. Equations are presented for the partial molar free energy, enthalpy, and entropy of mixing of the solute. An experimental study has been made of equilibrium in the reaction H2 6) +0 (dissolved) = H2O(g))for the liquid Cu-Co alloys. The standard free energy of solution of oxygen is presented as a function of composition for the alloys at 1550°C and as a function of temperature for five of the alloys. The experimental results for these alloys and also for Cu-Ni alloys are shown to be in reasonable agreernent with the theory in the random approximation. A knowledge of the thermodynamic behavior of dilute solutes in liquid metals and alloys is of importance in understanding and designing refining and alloy-making processes. Accordingly, several attempts have been made to derive suitable solution models to forecast the effect of a third component on the activity coefficient of such a solute in a metal. Alcock and Richardson' reviewed the literature prior to 1958 and also showed that a regular solution model gave a reasonable description in the case of metallic solutes but failed to account for the behavior of the more electronegative solutes sulfur and oxygen. These same authors2 later modified their model by using the quasi-chemical approximation3 to calculate the average composition of the first coordination shell surrounding each solute atom. This modified model was shown to lead to a better qualitative description of the behavior of the electronegative solutes; however, quantitative agreement with experimental data for oxygen in alloys could only be achieved by assuming a very small coordination number. The authors concluded that the major source of error in the model was the assumption that pairwise interaction energies were independent of composition. Substitutional and interstitial random solution models by Wada and saito4 are essentially similar to the first model except that the required interchange energies were derived from the modified solubility parameter equation of Mott, instead of from experimental binary data. Most recently Hoch5 has presented a statistical model for interstitial solutions and has applied the model to the Fe-C-O system. However, as the various interaction energies needed in the model had to be derived from the ternary data, the model does not promise well as a means of forecasting ternary behavior. Each of the above models carries the assumption that the strongly electronegative solutes have the same configurational environment as metallic solutes; i.e., the solute can be treated as a substitutional or interstitial atom in a quasi-crystalline lattice and is surrounded by a normal coordination shell of solvent atoms. There are, however, a number of facts which suggest that this is unlikely. First, the heats of solution are large, being more typical of molecule formation rather than alloying. For example, the heats of solution of monatomic oxygen and sulfur in liquid iron are -90 kea16,8 and -74 kea1,7, 8 respectively. These are to be compared with maximum heats of solution of metallic solutes in liquid iron of about -13 keal (silicon is an exception with -28.5 kea17). The large depression of the surface tension of liquid iron by trace amounts of the electronegative solutes oxygen, sulfur, and selenium9 suggests, by analogy with aqueous systems, the possible existence of polar molecules in the liquid. The effect of these solutes is at least three orders of magnitude greater than normal metal solutes.10 As has been pointed out by Richardson,11 the electron affinities and ionization potentials of oxygen and sulfur are such that it is likely that they exist in metallic solution as negatively charged ions. If this is so, and it is assumed that electrostatic forces play an important role in determining the configuration, it is unlikely that the stable configuration will be that of an isolated ion surrounded by a symmetrical coordination shell of solvent ions. It is more likely that the energy of the system would be lowered by the formation of solute-solvent screened dipoles. The above arguments suggest the formation of "molecular species" between solute and solvent atoms. The idea of the existence of molecular species in such solutions is not new, however', for Marshall and chipman12 have explained in a semi-quantitative manner the C-O equilibrium in liquid iron by postulating the species CO. Chen and Chip-man13 interpreted their measurements on the Cr-O equilibrium in iron in terms of the species CrO. Zapffe and sims14 have also postulated the existence of such species in liquid-iron alloys.
Citation
APA:
(1965) Extractive Metallurgy Division - The Thermodynamic Behavior of Oxygen in Liquid Binary-Metallic Solvents - A Simple Solution ModelMLA: Extractive Metallurgy Division - The Thermodynamic Behavior of Oxygen in Liquid Binary-Metallic Solvents - A Simple Solution Model. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.