Electrical Logging - The Relation Between Electrical Resistivity and Brine Saturation in Reservoir Rocks (See Discussions by G. E. Archie. p. 324, and by M. R. J. Wyllie and Walter. D. Rose. p. 325)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 438 KB
- Publication Date:
- Jan 1, 1949
Abstract
Data are presented which indicate that the saturation exponent, n, in the equation, R. = R100S-11, relating core resistivity, I:,. to the resistivity at 100 per cent saturation. R100. and to the saturation, S. may vary appreciably from the value of two which is usually assumed for this exponent when interpret ing well logs. Values ranging from one to two and one-half have been found on (.ore sample investigated to date. Attempts to correlate this saturation exponent with porosity or permeability of the core have not been successful. The saturation exponent is apparently not a function of the interfacial tension between the brine and the displacing fluid. Some evidence is given indicating that the resistance of the core is not a unique function of the saturation but depends upon the manner in which this saturation was achieved. Equipment and technique are discussed for measurement of resistivities in core plugs in which water saturation can be varied. lNTRODUCTION A number of investigations of the resistivity-saturation relationship for un-c~~nsolidated sands and consolidated (.ore samples have been reported in the literature. According to most of these: R. = R¹ººS², where R² = the resistivity of a formation at saturation S, and R¹ºº= the resistivity of the formation at 100 per cent water saturation. Much of this work was (lone on unconsolidated sands desaturated by gas or oil. Hen-clerson and Ynster worked exclusively with dynamic systems, flowing oil or gas through consolidated cores. There is some doubt as to how well this reproduces static reservoir conditions. Jakosky and Hopper³ onsidered also the case of consolidated core plugs, but the oil-water distribution in the emulsions which they used to saturate their cores is almost certainly different from that occurring in reservoirs. Recently Guyod quotes the results of some Russian work which indicates that n may vary from 1.7 to 4.3. No experimental details of this work are available. In connection with electric log interpretation it is important to know the value of the saturation exponent. For example, if in a given reservoir it is found that the resistivity is three time.; the resistivity observed when the reservoir is 100 pel. cent 'saturated with water, this fact would be interpreted as indicating a water saturation of 33 per cent if the saturation exponent were 1 and a water saturation of 6-1 per cent if the saturation exponent were 2.5. EXPERIMENTAL METHOD In the work to be described it was assumed that reservoir conditions are most nearly obtained when core plugs are desaturated by the capillary pressure technique referred to in numerous places in the literature, as for example. in Bruce and Welge's paper.' In this technique the core. saturated 100 per cent with brine, is placed in contact with a ceramic disc permeable to brine but not to the displacing medium for the displacement pressures used. Pres-ure is then applied to the displacing medium and brine forced out of the core through the ceramic disc. Fig. 1 shows the core plug in place in the cell in which resistivity and saturation measurements are made. Fig. 2 shows the schematic electrical diagram wed to make resistivity measurements on the core plug. A four-electrode type circuit is used, employing a Hewlett-Packard model 400A. AC vacnum tube voltmeter. The 60-cycle AC current througli the core is adjusted to 1 milliampere and measured by noting the voltage drop across the calibrated 100-ohm resistor. The vo1tages appearing at probes 1, 2, 3, and 4 are then successively measured. Voltage drops across the top, center, and bottom portions of the core are obtained by sublracting the voltages appearing at successive probes. This technique avoids any polarization or other high contact resistance phenomena which may develop at the current input electrodes. Resistances which may develop between the core and the probes, and which are small compared to the 1-megoam input impedance 01' the vacuum tube voltmeter will (obviously not affect the measurements allpreciably. Any very appreciable resistallces which may develop at any of the probe wires are detected and allowed for by inserting a 1-megohm resistor in series with the voltage measuring probe. If the probe resistance is actually zero, the new voltage measured after insertion of the I-megolim resistor will be approximately one-half of that previously measured. since the input impedance of the vacuum tube voltmeter is itself 1 megohm. If an! appreciable probe resistance has developed, the new voltage is found to be appreciably greater than one-half of the previously measured voltage. Such probe resistance; have been found to develop only occasionally and usually can be traced to poor connections betwern the core
Citation
APA:
(1949) Electrical Logging - The Relation Between Electrical Resistivity and Brine Saturation in Reservoir Rocks (See Discussions by G. E. Archie. p. 324, and by M. R. J. Wyllie and Walter. D. Rose. p. 325)MLA: Electrical Logging - The Relation Between Electrical Resistivity and Brine Saturation in Reservoir Rocks (See Discussions by G. E. Archie. p. 324, and by M. R. J. Wyllie and Walter. D. Rose. p. 325). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.