Discussion of Papers Published Prior to 1958 - Filtration and Control of Moisture Content on Taconite Concentrates

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 1
- File Size:
- 327 KB
- Publication Date:
- Jan 1, 1959
Abstract
Ossi E. Palasvirta (Development Engineer, Oliver Iron Mining Diu., U. S. Steel Gorp.)—The authors are to be congratulated for their interesting article, which thoroughly illustrates the variables inherent in filtration of taconite concentrate. The work and the conclusions based thereon largely parallel the test work done by the writer at the Pilotac plant" and the experience gained with a commercial size agitating disk filter in the same plant. At Pilotac, however, a thorough study was also made of the effect of depolarizing (demagnetizing) the filter feed, and it is the purpose of this discussion to comment on the merits of depolarization of the magnetite concentrate prior to filtering. The work at Pilotac was done in three phases: 1) preliminary laboratory testing with a circular filter leaf of 0.047 sq ft, followed by 2) plant testing using a 4-ft diam, single-disk agitating filter that was purchased on the basis of the pilot tests on the 4-ft model. In the laboratory tests depolarization was achieved by slowly withdrawing' batches of thickened concentrate from a coil producing an alternating field of about 300 oersteds. In plant tests the standard Pilotac procedure' was employed, wherein the pulp falls freely through the depolarizing coil. The preliminary tests in the laboratory at first seemed to indicate that although depolarization of the filter feed decreases the cake moisture, it also tends to decrease the thickness of the cake, thus decreasing filtering rate. The tests with the 4-ft disk filter soon showed, however, that the compactness of the cake, attained during the form period because of depolarization, permitted a considerable decrease in drying time without any sacrifice in final moisture content. Thus, the filter could be operated at a much higher speed, and the overall capacity was higher than with magnetized feed. Because of the great compactness of the cake there was little shrinkage during the drying period, which prevented cracking and subsequent loss in vacuum. This in turn permitted operation with as thick a feed pulp as the diaphragm pumps could handle, eliminating the necessity of pulp density control. On the basis of these findings, the 6-ft agitating disk filter has been operated at 2 rpm, using feed pulps varying from 65 to 73 pct solids. Initially Saran 601 was used as medium, but it was later replaced with a relatively open, tight-twist nylon cloth. Filtering rates up to 750 lb per ft- er hr can be attained with feeds averaging about 70 pct- 270 mesh, and there is no trouble because of cracking. The cake moistures vary between 8.5 and 9.5 pct. To recapitulate, the merits of depolarizing the filter feed may be summed up as follows: 1) The well dispersed pulp shows less tendency to settle in the filter tank. 2) The homogeneous filter pool results in more even cake formation. 3) Because of absence of flocs, great compactness of cake is attained during the form period. 4) The cake does not tend to crack during the drying period. 5) A drier cake is produced. 6) A shorter drying period is necessary, permitting higher operating speed, which in turn results in increased capacity. 7) Density of the feed pulp can be kept as high as the equipment can handle. This increases capacity, since it is directly proportional to the percentage of solids in the pool. A few tests were also made to study the effect of chemical flocculants on filtration efficiency. Results showed that the effects of chemical and magnetic floc-culation were quite similar. Thus the use of a floccu-lant would impair rather than improve the filtering of magnetite concentrate. A. F. Henderson, C. F. Cornell, A. F. Dunyon and D. A. Dahlstrom (authors' reply)—We want to thank O. E. Palasvirta for his comments, particularly in view of the encouraging results obtained with demagnetized taconite concentrate. In our studies an attempt was made to evaluate the effects of depolarizing the feed to the plant filters by passing the slurry through a coil, similar to the method described by Palasvirta. Unfortunately, in our experiments there were no startling improvements in performance level, neither cake rate increase nor cake moisture reduction. However, when slow filter cycle speeds were employed, the filter cake tended to crack and the vacuum level dropped, resulting in an increase in cake moisture content. When demagnetized feed was used during slow speeds, no cake cracking was evidenced and the vacuum level remained constant. Thus the depolarizing coil was found necessary only in cases of cracking. It should be noted that most of our test work concerned a feed of 85 to 90 pct —335 mesh and about 60 pct by weight solids concentration. This contrasts with 70 pct —270 mesh and 65 to 73 pct by weight solids as noted by Palasvirta. Reviewing both sets of results, it might be concluded that depolarizing may be successfully employed to alleviate cake cracking tendencies and may markedly improve cake rates and moistures on the coarser taconite concentrates. Further investigations may disclose the exact relationship of grind and pulp density to the depolarizing action.
Citation
APA:
(1959) Discussion of Papers Published Prior to 1958 - Filtration and Control of Moisture Content on Taconite ConcentratesMLA: Discussion of Papers Published Prior to 1958 - Filtration and Control of Moisture Content on Taconite Concentrates. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.