Design and Construction of Driven H-Piles for Landslide Stabilization in Marlboro Clay

Deep Foundations Institute
Kofi B. Acheampong Charbel Khoury Kwabena Ofori-Awuah
Organization:
Deep Foundations Institute
Pages:
10
File Size:
993 KB
Publication Date:
Jan 1, 2017

Abstract

"Following heavy rains in spring of 2014, Prince George’s County officials issued a mandatory evacuation for homes in the Piscataway Hills subdivision of Fort Washington, Maryland where a landslide along a 1700-foot hillside destabilized homes, collapsed the single access road, and resulted in water and sewer mains break. Forensic investigations, including geologic assessments, test borings and in-situ Cone Penetrometer and Dilatometer soundings, were performed to evaluate subsurface conditions and provide stabilization options for the roadway and slopes. Post-failure ground movements were monitored using inclinometers. Critical failure planes were identified within the underlying 30-foot thick Marlboro Clay formation, a known geologic hazard with historic occurrences of landslides and slope failures.This paper discusses the remedial design for stabilizing the landslide and 60-foot hillside slope failure, and protecting the roadway. Amongst several feasible options, driven piles were selected in consultation with the County and retained contractor based on cost, environmental impacts and site constraints. Constraints included private ownership of hillside slope, upslope buildings safety; deep-seated failure, relocation of underground water and sewer mains, and accelerated construction schedule.Pile design included global slope stability analyses and lateral pile analyses using several loading configurations to optimize pile geometry and spacing, and determine a value-engineered design satisfying both serviceability and strength limit states to achieve long-term stability with factor of safety of 1.3. Soils within the active landslide plane were assumed to provide no resistance, while soils below the failure plane provided lateral resistance. This stabilization scheme, which extended along the 1700-foot roadway section and toe of hillside slope area, consisted of 410 steel HP16x141 piles in two to three rows driven to depths between 60 and 70 feet below the Marlboro Clay stratum at 5 to 7-foot spacing."
Citation

APA: Kofi B. Acheampong Charbel Khoury Kwabena Ofori-Awuah  (2017)  Design and Construction of Driven H-Piles for Landslide Stabilization in Marlboro Clay

MLA: Kofi B. Acheampong Charbel Khoury Kwabena Ofori-Awuah Design and Construction of Driven H-Piles for Landslide Stabilization in Marlboro Clay. Deep Foundations Institute, 2017.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account