Coal - Low-temperature Coke as a Reactive Carbon

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. E. Lesher
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
428 KB
Publication Date:
Jan 1, 1951

Abstract

THIS paper reports a study of the reactivity of 950°F and 1650°F cokes as measured by relative rates of reduction of iron oxides at temperatures up to 2200°F. Previous work cited shows general acceptance of the theory that reduction by carbon is a gaseous reaction, and that kind and character of carbon as well as particle size have measurable effect on the velocity of reaction. As will be shown, the data obtained in this study confirm those conclusions. The work was not designed to examine iron oxide reduction equilibrium, but if reaction velocity be defined as the speed with which "a reaction tends to approach conditions of equilibrium," the data here presented may be considered as a study of reaction rates, and the relative degree of reduction to metallic iron as the measure of reactivity. Three standardized combinations of Lake Superior brown iron ore with carbon were tested by similar procedures. One combination was a mechanical mixture of carefully sized high-temperature coke (1650°F) with the ore. The second was a mechanical mixture of the ore with Disco* obtained by carbonizing the identical coal at 950 °F. The third was an agglomerate prepared by carbonizing the coal and ore at 950°F, premixed in proportions to give as nearly as possible the same relative amounts of carbon and ore as the mechanical mixtures. This agglomerate, obtained by heating the finely divided ore (through 30 mesh) with coking coal through the plastic temperature range so as to form solid aggregates, gives a product in which the oxide particles are impregnated with, and intimately bound together with low-temperature coke. The agglomerate-—ore-Disco—was most active in oxide reduction; the mechanical mixtures of Disco and ore next in order, with coke the least reactive. General Discussion: Carbon exists in many forms and it is well known that the form or nature of the carbon used in reduction of oxides is related to the critical temperature of reduction. Sugar carbon, charcoal, and lampblack are forms of carbon that will reduce oxides at lower temperatures than high-temperature coke, and coke will, in turn, give a lower critical reduction temperature than graphite. There have been many investigations of this characteristic of carbons. Johnson' reported a difference of 130°F (70°C) in the critical reduction temperature of zinc oxide as between charcoal 1891 °F (1033°C) and Acheson graphite turnings 2021°F (1105°C) with zinc oxide. Bodenstein2 using charcoal and coke, found a difference of 138°F (77°C) comparing an experimental figure of 2066°F (1130°C) for coke and 1928°F (1053°C) for charcoal, in the reduction of zinc oxide. He concluded that this is very marked and observed that the "type of carbon merely raises or lowers the temperature at which rapid reaction takes place." Comparing the effectiveness of types of carbon in reduction of zinc oxide, it was found that a "brown coal coke" gave 97 pct zinc elimination at 1832°F (1000°C), as compared with 48 pct with "hard coal coke."' A wide range of metallic oxides was studied by Tammann and Sworykin,4 who found that the temperature at which decomposition of oxides begins depends on the nature of the carbon used. Carbon in the form of graphite, lampblack, and sugar carbon was investigated. Sugar charcoal will reduce Fe2O3 to Fe3O4 at 842°F (450°C) as compared with 1112°F (600°C) for coke, according to Meyer." Direct reduction of iron oxides by charcoal begins at 1382°F (750°C), but "first becomes intense" at 1652°F (900°C), whereas with coke, direct reduction begins at 1742°F (950°C), and "first becomes appreciable" at 2012°F (1100°C).6 he total reduction of the sample under certain conditions when heated in a current of CO with charcoal was about 100 pct for limonite and about 77 pct for magnetite. Using coke under the same conditions, the respective percentages were 75 and 47. In a study of processes for sponge iron7 by the Bureau of Mines, the conclusion was reached that a low-temperature char from noncoking subbituminous coal is the most satisfactory solid reducing agent. In a critical study of zinc smelting from a theoretical viewpoint Maier8 concluded that the reduction is by CO, that the reaction between ZnO and CO is intrinsically more rapid than the subsequent reduction of CO2 by C, which is limited by diffusion rates, which in part effectively limits the smelting process. Maier said that the operation is improved with the activity of the reducing carbon. An active carbon, he said, is one maintaining a low CO, content in the retort. Reactivity of Carbon: One form of carbon is more potent in reducing oxides than another. A carbon that reacts faster than another at a given temperature is said to be more reactive. Reactivity is measured by several methods, using carbon dioxide, air, or steam as reactants.9 ebastian and Mayers" have developed a method for the determination of absolute reaction rates between coke and oxygen by a study of ignition points under certain conditions. These and other investigators have established the relative reactivity of types of carbon. Lignite, charcoal, bituminous coal, cokes in the ascending order
Citation

APA: C. E. Lesher  (1951)  Coal - Low-temperature Coke as a Reactive Carbon

MLA: C. E. Lesher Coal - Low-temperature Coke as a Reactive Carbon. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account