Clays – Hormites: Palygorskite (Attapulgite) and Sepiolite

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 6
- File Size:
- 607 KB
- Publication Date:
- Jan 1, 1994
Abstract
The "Hormite Group" was proposed for palygorskite (attapulgite) and sepiolite for their complex magnesium silicate composition and elongate crystals (Martin-Vivaldi and Robertson, 1971). These minerals occur in close association with each other and more complex structural variations may exist (Bailey, 1972). In 1862 Savchenkov used the name palygorskite to describe a mineral from the Palygorsk locality (Hay, 1975), near the Ural Mountains. Ovecharenko and Kukovsky (1984) mention that when mountain leather deposits were prospected in the Palygorsk Division mine it was assumed this unusual mineral was a variety of asbestos. Early mineralogists used the terms "mountain cork" or "mountain leather" when referring to palygorskite. Robertson (1986) mentions that it appears palygorskite was known since Theophrastus' time, ca. 314 BC. J. de Lapparent used "attapulgite" for clays from Attapulgus, GA, and Mormoiron, France, because he thought them different from palygorskite, but the two types were proved to be the same (Bailey et al., 1971). The name attapulgite is still used for the Florida and Georgia deposits when the crystal length to diameter ratio does not exceed 10:1(Merkl, 1989). Georgia palygorskite clays are of much shorter length compared to classic palygorskite. In 1847 Glocker first used the name sepiolite which was called "Meerschaum" by Werner (1788) and Hauy (1801) namedit "Ecume de Mer." Brochant (1802) described low density and white magnesium silicates adding the name Talcum Plasticum and Ecume de Mer. In the Meigs-Attapulgus-Quincy district palygorskite (attapulgite) commonly occurs in two distinct forms referred to as short length palygorskite (Meigs Member) and long length palygorskite (Dogtown Member) (Merkl, 1989). Long length palygorskite crystals (> 10 pm) are rarely observed in the Meigs and Dogtown Members, but when present are in association with dolomite crystals. The short length form is usually less than 2 pm in length and has a low magnesium content whereas the long length form has a high magnesium content and a length greater than 2 pm. The distinctions in morphology are not only important because of the relationship to the origin of the deposits, but also in relation to activity in causing membranolytic activity related to data on palygorskite samples from 9 locations ranging from relatively inert to active in work reported by Nolan et al. (1989). The > 10 pm lengths amounted to only 51 of 17,401 fibers sized. The shortest lengths (< 0.5 pm) were relatively inert. This study pointed out that surface activity, morphology, and chemical differences may be distinctly different within the definition of palygorskite, or for that matter for any individual mineral so that health and other properties must be measured because the name alone does not necessarily indicate uniformity. Palygorskite (attapulgite) fuller's earth was first sold for drilling mud in 1941. The market for this use expanded slowly and has maintained a level of 7 to 10% of the total US production during the last few years. Most of the fuller's earth sold for drilling mud comes from the southern part of the Meigs-Attapulgus-Quincy district of Georgia and Florida. Palygorskite clays produced in this area are superior to most other fuller's earth for mud used in drilling salt formations, but because of high water loss, they are inferior to bentonite where the rocks drilled contain no saltwater. According to Oulton (1965), more than 90 different grades of fuller's earth are produced. Some of these grades are used for pharmaceuticals designed to absorb toxins, bacteria, and alkaloids; for treatment of dysentery; for purifying water and dry cleaning fluids, dry cleaning powders and granules; for the manufacture of NCR (no carbon required) multiple copy paper; for the manufacture of wallpaper; and as extenders or fillers for plastic, paint, and putty. Fuller's earth mined near Ellenton, FL, was used for making lightweight aggregates for the construction of concrete barges during World War I1 (Calver, 1957). Still other uses of fuller's earth and its suitability for uses in new products are outlined by Haden, Jr., and Schwint (1967), Haden, Jr., (1972), and Haas (1970). One special use of fuller's earth is as a carrier of platinum catalysts that are made in the United Kingdom from sepiolite clays mined in Spain. Other uses of sepiolite fuller's earth (Chambers, 1959) are similar to those of the palygorskite (attapulgite) type mined in the United States.
Citation
APA:
(1994) Clays – Hormites: Palygorskite (Attapulgite) and SepioliteMLA: Clays – Hormites: Palygorskite (Attapulgite) and Sepiolite. Society for Mining, Metallurgy & Exploration, 1994.