Assessment Of Gamma Doses Absorbed By Underground Miners In Canadian Uranium Mines

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 6
- File Size:
- 308 KB
- Publication Date:
- Jan 1, 1981
Abstract
INTRODUCTION Until recently, gamma doses had been largely ignored in Ontario uranium mines. This has been due to the assumption that these doses are small and have been more or less unchanged with time and hence their effects have been included automatically in the epidemiological studies that led to the establishment of radon daughter exposure limits. This assumption had to be challenged for two basic reasons. The first was that radon daughter exposures to miners have been progressively reduced over the years due to improved ventilation and ever more stringent regulations, while gamma exposures have presumably remained relatively unchanged. Therefore it must be assumed that the ratio of gamma to radon daughter exposure has gone up. The second reason is more philosophical. It is clearly inappropriate to make judgements on the significance of a potential industrial hazard when the magnitude of that hazard has not been fully assessed. Having decided that some sort of assessment of gamma exposures to uranium miners must be made, it was than necessary to determine how this should be done. Several options were available, for instance: (i) Wholesale personal gamma dosimetry for all mine and mill workers, (ii) Personal gamma dosimetry only for those workers suspected of receiving the higher doses, coupled with area monitoring to estimate the exposures of other workers, (iii) Area monitoring coupled with dose rate times time calculations for all. This would correspond to the generally prevalent method of assessing radon daughter exposures. It was argued that since radon daughter exposures are the major radiological hazard in uranium mines, to invest resources for assessing a lesser hazard to a greater degree of precision was not cost effective. (iv) Since gamma dose rate is related to ore grade, individual doses could be assigned from knowledge of work location and ore grade. Before deciding which of these options would be most appropriate, it was necessary to have some idea of the magnitude of the problem. Very few data were available in the literature and with the exception of a few spot dose rate measurements, and the results of a few gamma dosimeters issued to selected individuals by some of the mining companies, nothing was available. A rule of thumb of obscure origin is often quoted within the industry indicating that gamma dose rates underground will be about 0.25 mR/h per lb/ton or 5 mR/h per % U. This had been used by some to justify neglecting gamma radiation at least for ore grades of the order of 0.1% or 2 lb/ton, on the grounds that gamma dose rates would be of the order of 0.5 mR/h and therefore give rise to annual doses of only about 10 mSv (lrem). That is, it was assumed that gamma radiation was of limited concern compared to the hazard associated with the inhalation of radon daughters. We were thus faced with the situation of just assuming that no regulatory limits were being breached. This situation could not be allowed to continue. A program was initiated to investigate the gamma doses absorbed by uranium miners in three mines in Ontario, and extensive gamma surveys were conducted in the Quirke 2 mine of Rio Algom Ltd, Elliot Lake; Denison Mine, Elliot Lake; and Agnew Lake Mine, Espanola. Negative reaction was received from several mine company officials to the possibility of all miners being required to wear personal gamma dosimeters due to the logistical difficulties involved, and therefore part of the project was aimed at determining if a reliable correlation between gamma dose rate and ore grade in the work location could be deduced, in order that dose rate times time calculations might be used for gamma dose assessments. The results of these programs provided evidence that the gamma dose for some employees in the three mines investigated may be a significant fraction of the current maximum permissible annual dose of 50mSv (5 rem). When combined with radon daughter exposures in the manner recommended by the ICRP at their 1980 Brighton meeting (ICRP 80) the results indicated that some individuals will come close to the resulting limit and may even exceed it. The results also indicate that is probably not feasible to develop a reliable formula for
Citation
APA:
(1981) Assessment Of Gamma Doses Absorbed By Underground Miners In Canadian Uranium MinesMLA: Assessment Of Gamma Doses Absorbed By Underground Miners In Canadian Uranium Mines. Society for Mining, Metallurgy & Exploration, 1981.