A Dynamic Photoelastic Evaluation Of Some Current Practices In Smooth Wall Blasting

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 726 KB
- Publication Date:
- Jan 1, 1979
Abstract
For the past 3 years, the authors have been conducting research sponsored by the National Science Foundation (RANN) to improve the process of excavation by drilling and blasting. The approach followed has been experimental where the development of stress waves and fractures initiated at the bore hole have been investigated in order to obtain a complete understanding of the dynamic fracture process. The second step in the approach has been to introduce modifications in the drill and blast procedure which will permit closer control of the fracture process. The laboratory investigations involve high speed photography where the dynamic fracture process is recorded with a Cranz-Schardin 1, 2 multiple-spark camera. The camera is equipped with 16 spark gaps which are pulsed at 25 K volts to produce an intense but very short (0.5 sec) flash of light. The camera is capable of recording 16 photographs of a dynamic event at framing rates which can be varied from 30,000 to 1,500,000 frames per second. The exposure time is sufficiently short to stop motion associated with detonating explosive charges and to make visible the details of the fracture process at a bore hose. The bore hole in a massive intact rock formation is modelled with a two dimensional plate containing a circular hole to represent the bore hole. The model material employed is a transparent polyester known commercially as Homalite 100.* This polymeric material is extremely brittle as evidenced by its extremely low fracture toughness of [ ]. The fracture toughness is a measure of the ability of a material to resist the propagation of flaws or small cracks. In comparison, Schmidt3 has recently measured the fracture toughness of Salem limestone and determined [ ]. Thus, the Homalite 100 should closely model the brittle nature of rock where fractures occur at small flaws and propagate without any apparent plastic deformation. Homalite 100 is also birefringent, which indicates that it becomes optically anisotropic when subjected to either static or dynamic loads. Circularly polarized light is transmitted through the loaded Homalite 100 model in a polariscope4 and the birefringence produces an optical interference pattern which is called a fringe pattern. For dynamic photoelasticity, the multiple-spark camera is equipped with polaroid filters to produce the circularly polarized light required to generate the photoelastic fringe patterns. An example of a singlespark frame showing a fringe pattern from a typical experiment is presented in [Fig. 1]. The photograph was taken 0.000072 sec (72 sec) after the detonation of the explosive charge. The circular fringes are due to the outgoing dilatational or P type stress wave and travel with a velocity of 85,000 in. per sec (2260 m/sec) in the Homalite 100. The P wave is followed by a second lower velocity stress wave known as the shear or S type wave which propagates at a velocity of 49,000 in. per sec (1245 m/sec). In the local neighborhood of the bore hole, several radial cracks are visible. These cracks propagate at essentially a constant velocity of 15,000 in. per sec (380 m/sec) prior to arrest. The fringes about the crack tips and in the local region of the bore hole are primarily due to the residual gases contained in the bore hole after the explosive charge was detonated. Sixteen frames similar to this one are recorded during the experiment to give full field visualization of the dynamic event at 16 discrete times over its duration. The fringe order number N is related to the difference in the principal stresses of and 02 according to a stress optic law4: [ ] where f0 = material fringe value, and h = model thickness. The wholefield dynamic-fringe patterns provide a basis for simultaneously observing the interaction between propagating cracks and the stresses which drive these cracks. Fracture Control Experiments Improvements in the efficiency of the drill and blast procedures must involve close control of the fracture process following the detonation of an explosive charge in a bore hole. By control it is implied that the number of cracks initiated and the location of each crack on the wall of the bore hole can be specified. Control also, involves orienting each crack and maintaining the crack path and velocity until the specified crack length is achieved. If the entire fracture process can be controlled, then rounds can be designed to optimize volume removed. fragment size and minimize costs. One area of blasting where fracture control is vitally important is in underground excavation where the strength and stability of the rock walls must be maintained and smoothness and precision of the walls must be achieved. The smooth blasting method is one of the most commonly employed procedures for achieving some degree of fracture control. In smooth blasting, the central region of material is first removed, and then the final row of closely spaced undercharged or cushioned holes are fired to remove the final volume and produce a smooth wall. In some instances, unloaded or dummy holes between the loaded holes are recommended to guide the fracture plane. This investigation pertained to an evaluation of 3 features of the smooth blasting process. These included (a) the effect of stress reinforcement on fracture by simultaneously firing 2 charges; (b) the influence of a dummy hole on control of the fracture planes between 2 simultaneously fired charge holes; and (c) the influence of dummy hole spacing on fracture plane control.
Citation
APA:
(1979) A Dynamic Photoelastic Evaluation Of Some Current Practices In Smooth Wall BlastingMLA: A Dynamic Photoelastic Evaluation Of Some Current Practices In Smooth Wall Blasting . The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1979.