Lung Cancer Mortality And Radiation Exposure Among The Newfoundland Fluorspar Miners

Morrison, H. I. ; Wigle, D. T. ; Stocker, H. ; deVilliers, A. J.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 5
Publication Date: Jan 1, 1981
INTRODUCTION At the end of 1959, high levels of radioactivity attributed to radon and its daughter products were discovered in the fluorspar mines at St. Lawrence, Newfoundland. These levels were presumed to be the cause of an unusually high incidence of lung cancer among the fluorspar miners (deVilliers & Windish, 1964) (Parsons et al. 1964). The mining of fluorspar (calcium fluoride) began in 1933 as open pit operations but converted to standard underground mining procedures in 1936. During the second world war, production was greatly expanded as a result of increased demand for fluorspar used in the production of steel. Wet drilling was first introduced into general use in 1942. Ventilation was mainly by natural draft occasionally supplemented by small blowers. The amount of ventilation varied greatly between mines as well as over time. For example, one large mine, the Iron Springs mine, had only a single small raise to the surface some 600' from the central shaft. Other mines, such as the Director mine, had a number of raises to the surface and, as a result, had far better ventilation. Mines also varied by the amount of ground-water which seeped into them. In the early 1950's, an unusually large number of lung cancer cases were diagnosed among the fluorspar miners. As a result, in 1956 and 1957, J.P. Windish of Canada's Department of Health and Welfare tested for possible causative agents in the mines. Unfortunately, radon measurements were not conducted until 1959 and 1960 when Windish tested Director mine as did the A.D. Little company in 1960. As a result of the high radon levels found, mechanical ventilation was introduced and the concentration of radon dauthers fell, on the average to well below 1 WL. During this period, lung cancer cases continued to be diagnosed with 29 lung cancer deaths recorded by 1964 and 71 by 1971. As of July 1981, 105 lung cancer cases had been identified (Hollywood, 1981). Previous reports concerning the fluorspar miners have dealt in detail with the factors in the occupational environment and discussed occupational mortality patterns. The purpose of this paper is to review further the mortality experience with particular reference to lung cancer in relation to cumulated radiation exposure and to describe briefly our ongoing study of this group. METHODS Occupational histories were prepared for men who had been employed by the mining companies at St. Lawrence during the period 1933 to 1977. The histories were compiled from company records except for the period 1933 to 1936, records for which were lost in a fire; however, the occupational histories for this period were completed by searching census records and interviewing company officials, ex-employees and others. In addition, occupational and smoking histories were also obtained for some miners during a survey conducted in 1978. Occupational records included name and date of birth as well as the type, place and hours of work by year. For each year prior to 1960, hours of work were converted to working months (1 WM = 167 hours) and were multiplied by the estimated average radon daughter concentration in working levels (WL) to yield the annual radiation exposure in working level months (WLM). Pre-1960 radiation levels were estimated on the basis of the history of mining methods employed, ventilation history of the mine, type and place of work and conditions under which the first radiation measurements were made in 1959 and 1960 (deVilliers and Windish, 1964). During the period from 1960 to 1967, the average exposure was about 0.5 WL. Beginning in 1968, radiation levels were measured more frequently, and, beginning in 1969, daily exposures for each worker were recorded based on radiation levels in the place worked on a given day. Mortality data were obtained from medical certificates of death. In a small number of cases, medically certified death certificates were unavailable. In these cases, probable cause of death were obtained from forms completed by the local clergyman (returns of death), parish records, information obtained from interviews with family members of the deceased and/or hospital information, before assigning a cause of death. Data obtained from these sources were found in Tables 1, 2 and 4, cover the time period 1933 to 1971. Data in Table 3 as well as in Figures 1 through 3 cover deaths from 1933 to 1977, and includes only those miners for whom medical certificates of death were available. Two medically certified causes of death were changed from other causes to lung cancer on the basis of pathology reports.
Full Article Download:
(231 kb)