Ventilation Monitoring Instrumentation

Schnakenberg, George H. Jr. ; Kissell, Fred N.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 5
Publication Date: Jan 1, 1982
INTRODUCTION A variety of instruments are available for measuring or monitoring the performance of underground mine-ventilation systems. In general terms, the instruments may be classified as those that measure air velocity and those that measure gaseous concentrations. All costs herein are in terms of 1978 US dollars. The mention of a specific manufacturer or device is not intended to be an endorsement by the US Bureau of Mines. AIR-VELOCITY INSTRUMENTS The basic instruments used for measuring the air velocity in mines are the vane anemometer and the smoke tube. Vane Anemometer Of the air-velocity instruments, the 102-mm (4.0¬in.) vane anemometer is the most common and is available as either a low- or high-speed type. The low-speed anemometer generally is the most suitable for measuring the velocities in ordinary airways. For a rough check of the velocity in an airway, it usually is satisfactory to hold the anemometer by hand, positioning it in the center of the airway for 30 sec. However, the resultant error may be as high as 25% , and such a hand-held approach is unsuitable when accurate or reliable measurements are required. To obtain more accurate measurements, the proper procedure is as follows: 1) Since holding the anemometer by hand generally causes the instrument to read about 15% high, it is mounted on a 0.6-m (2-ft) extension rod. 2) The airway is divided into equal right and left halves. A 1-min traverse is used in each half, moving the anemometer smoothly up and down in a zigzag pattern so that the entire half is covered within the allotted minute. 3) The manufacturer's correction table is applied to the readings to adjust the velocity calculation as necessary. Whenever possible, anemometer readings should be obtained in a long straight section of airway that has a constant cross-sectional area. Bends and obstructions should be avoided, since they cause turbulence and other discontinuities in the airflow and can degrade the accuracy of the velocity measurements. Although a series of velocity measurements at one location usually corresponds to within a few percent, this is not an indication that the airflows calculated from those readings are completely accurate. One reason is that the correction table provided with the instrument generally is not for that specific instrument; instead, it represents the average correction for all such instru¬ments made by the particular manufacturer. Most cor¬rection tables specify a correction factor of from 0 to 15%, depending upon the velocity. However, even after correction, the instrument error still may range from 3 to 5%. At low velocities such as those below 0.76 m/s (150 fpm), the instrument error can be two or three times greater than this, ranging from 6 to 15%. The new ball-bearing anemometers generally perform somewhat better at low velocities than did the older conventional anemometers. Another source of error is introduced when measur¬ing the cross-sectional area of the airway or entry. Under the best of circumstances, measurement errors, instrument errors, and a host of other minor errors all combine to cause a total error of at least 10% in the velocity calculation. The vane anemometer also can be used with reason¬able accuracy to measure airflows in mine-ventilation ducts. In this application, the anemometer is mounted on a rod and is held at the center of the duct end. For a duct that is discharging air, the average velocity in the duct is 85% of the centerline reading (Northover, 1957). For a duct that is taking in air, the average velocity is 70% of the centerline reading (Haney and Hlavsa, 1976). To measure the airflow discharged from a regulator or from a small hole in a stopping or bulk¬head, a correction factor for the area is necessary. A good approach in this situation is to traverse the area of the regulator or hole, holding the anemometer with an extension rod. This provides an average velocity that is multiplied by 85% of the measured area of the regulator or hole. In all cases, the manufacturer's instrument cor¬rection table must be used and applied properly. For accurate results, the anemometer should be returned to the manufacturer for periodic cleaning and checking. If it is in daily use, the anemometer should be returned about once per year, and proportionally less frequently if the usage is less frequent than on a daily basis. Smoke Tube The smoke tube may not appeal to individuals who believe that good measurement results can be obtained only with expensive, complicated, and fragile instru¬mentation. Nevertheless, smoke works about as well as anything for the routine measurement of low air velocities in mines. The following procedure yields reasonably good results: 1) Two marks are scratched 7.6 m (25 ft) apart on the floor of the airway. 2) The smoke tube is used to release a cloud of smoke in the center of the airway, about 0.9 m (3 ft) upstream of the first mark on the floor. 3) A timed interval begins when the leading edge of the smoke cloud passes over the first mark, and the interval stops when the leading edge of the cloud passes over the second mark. 4) A factor of 20% is subtracted from the cal¬culated velocity to determine the true average velocity, providing a correction for the centerline and for the spreading effect at the front of the cloud. Velocities calculated with the preceding method generally are accurate to within 10 to 15%. In some instances, the cloud from a conventional smoke tube
Full Article Download:
(340 kb)