Dynamic Methods of Rock Structure Analysis

Leighton, Fred
Organization: Society for Mining, Metallurgy & Exploration
Pages: 12
Publication Date: Jan 1, 1982
INTRODUCTION Dynamic (seismic or microseismic) methods of determining the stability of structures in rock are based on detecting and analyzing the characteristics of seismic energy that has originated from or traveled through the rock mass. This seismic energy can be in the form of naturally occurring rock noise energy resulting from structural adjustments within the rock or can be introduced into the structure by physical means, such as by blasting or impact. In either case, the seismic energy radiating through the rock mass can be detected using standard equipment and can be analyzed by established techniques to reveal a wide variety of information concerning the condition and stability of the rock mass through which the energy has traveled. In the following sections, the basic instrumentation required for seismic and microseismic studies is described, and some of the presently used applications of these methods are discussed to exemplify the state of the art. INSTRUMENTATION Seismic disturbances in a rock structure generate two types of seismic wave radiation, body waves and sometimes surface waves, which radiate outward in all direc¬tions from the source of the disturbance. Underground mining applications are generally concerned only with discerning the characteristics of the resulting body waves, i.e., the compressional (p-wave) and the shear (s-wave) energy. As these two forms of energy travel through the rock structure, the particles of the rock mass are caused to vibrate, and the vibration character¬istics resulting from each of the two types of wave are distinct. Some important differences are: 1) Compressional and shear waves travel at different velocities through the rock structure. 2) The frequency at which each wave causes particles to vibrate is different, and may range from about 50 to 100 000 Hz. 3) The amplitude or energy level of each wave is different, with the shear energy usually being the greatest. These differences form the basis for equipment se¬lection for individual studies and for modern data analysis techniques. The following sections describe the basic equipment necessary to detect and record seismic wave energy data and show several examples of analysis procedures and how these procedures have been used. In principle, seismic equipment is very simple. It consists of a geophone (or geophones) to detect the seismic energy vibration and convert that vibration to an electric signal, an amplification system to increase the level of that signal, and a means of monitoring and/or recording the signals detected. Fig. 1 is a block diagram of a typical system. The following sections offer a very brief discussion of system components and their individual functions. A more complete discussion is given by Blake, Leighton, and Duvall (1974). Geophones The function of the geophone is to detect the vibrations caused by the passing of the seismic wave energy and to convert that vibration into an electrical signal that displays both the amplitude and frequency characteristics of the vibration. Particle motion or vibration can be quantified and measured by measuring displacement, velocity, or acceleration of the particles. Thus, there are three types of geophones: displacement gages, velocity gages, and accelerometers. The choice of gage depends on the characteristic frequencies of the seismic energy to be monitored and the sensitivities of each type of geophone. In general, displacement gages are used for low-frequency monitoring (periods to 1.0 Hz), velocity gages for medium-frequency monitoring (1.0 to 250 Hz), and accelerometers for high-frequency monitoring (250 to 10 000+ Hz). Experience has shown that in underground studies, the choice of which gage to use lies between velocity gages and accelerometers. An easy, accurate method for selection of gage type is discussed by Blake, Leighton, and Duvall (1974). Once the type of geophone has been selected for use, it must be properly installed, and in the installation procedure the most important step is insuring that the gage is firmly attached to a competent portion of the rock structure. Poorly mounted geophones may entirely fail to recognize low-level seismic signals and will distort the information from signals they do see. Amplifiers Seismic events associated with mine structures occur over a very broad range of energy which results in a broad range of geophone output levels. In general, geophone output levels occur in the microvolt to low milli-volt range, and it is necessary to amplify these signals in order to drive recording or monitoring equipment. Because either an accelerometer or a velocity gage might be used as the geophone, the amplification system must
Full Article Download:
(715 kb)