Design of Caving Systems

Merrill, Robert H.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 4
Publication Date: Jan 1, 1982
INTRODUCTION In most cases, the design of an underground mine is based upon the premise that the ground either will cave or will be stable. This chapter concerns the design of a mine in ground that will cave readily or with some as¬sistance, such as by long-hole drilling and blasting. Some of the more widely used caving systems of mining are panel caving, block caving, sublevel caving, and large pillar recovery. Some of the less widely used systems are glory-hole, top slicing, and induction caving. Al¬though the common practice of pillar robbing is not usually considered to be a caving system, this subject will be treated as a part of this chapter. BASICS OF CAVING Caving systems are most successful in ground that will cave in sizes that will flow through openings and grizzlies, and will easily load in cars or on belts for haul¬age. The ground most likely to cave well is highly frac¬tured and contains breaks, flaws, or other discontinui¬ties that form planes of weakness. Also, caving action can be greatly enhanced if the host rock itself is low in compressive, shear, and tensile strength. Ideally, a cav¬ing system of mining is best employed when the criteria for caving is a feature of the ore body and the develop¬ment drifts, haulageways, and drawpoints can be mined in a highly competent rock beneath the mineralized zone. However, the development is often in the same, or similar, fractured rock and the openings require sub¬stantial artificial support to assure stability. Several clues can be assembled to identify potential caving ground; however, for borderline cases, no sure method has been devised to date. The diamond-drill cores taken for exploration can provide an excellent clue provided drilling is performed carefully by experienced drillers. For example, if the ground is cored in such a manner that the breaks in the core are caused more by failure of the rock than by whipping core barrels, plugged drill bits, or other drilling causes, and the intact core lengths are consistently long [say, 0.6 to 3 m (2 to 10 ft) of unbroken core], there is little reason to believe the ground will cave without considerable as¬sistance. This is especially true for rocks with compres¬sive strengths above 34.5 MPa (5000 psi) and tensile strengths above 2.1 MPa (300 psi). On the other hand, if core recovery is low (below 80%) and the recovered ore is broken in small pieces and the breaks are along obvious weaknesses in the rock, the chances are excel¬lent that the ground will cave. This is true even when the rock between the defects has high compressive and tensile strength. Another clue has already been mentioned, that is, the measurement of the physical properties of the rock and the natural planes of weakness or defects in the rock. The planes of weakness in the rock can often be detected from outcrops, cores, or other exposures of the rock under consideration. Some rock types are known to be strong and will sustain large, unsupported open¬ings and would be difficult to cave intentionally. Yet the same rock type can also contain unbonded or weak planes of weakness or fractures, and in these locations the rock would undoubtedly cave with little assistance. Therefore, although the inherent strength of the rock is a factor in caving, the natural defects in the rock are more often the deciding factor. DESIGN CONCEPTS For the most part, the design of openings for caving ground is a problem of the interaction of openings over a relatively large area of the mine. To illustrate, Fig. 1 is a simplified section of a series of openings along the grizzly level or draw level of a block caving or panel caving development, and above this opening is a simpli¬fied section of a room-and-pillar arrangement on the undercut level. At this stage of the development, the stresses around the openings on the grizzly level are only moderately influenced by the openings on the undercut level and vice versa. Therefore, the stresses around the openings are approximated by the stresses around single or multiple openings in rock, the values of which are de¬scribed in the literature (Obert, Duvall, and Merrill, 1960; Obert and Duvall, 1967). Once the pillars on the undercut level are blasted (Fig. 2), the situation changes abruptly. The undercut opening (prior to caving) now can be approximated as an ovaloidal opening above the grizzly drifts and this opening tends to shield the vertical stress field. As the caved stage is drawn the stope approximates a much larger rectangular or square opening filled with rock, and if the rock is not sustaining a major portion of the stress field, this opening can be considered (for en¬gineering purposes) to be empty and the stresses that interact between the larger and the smaller openings take on a totally new perspective (see Fig. 3). Next, let the material cave to the surface, and let the caving ma¬terial sustain some stress, but much less than if the ma¬terial were intact. This condition is similar to a soft inclusion in a rigid body and has been treated in the literature (for example, Donnell, 1941). At this point in time, the grizzly drifts are subjected to the stress con-
Full Article Download:
(331 kb)