Down-the-Hole Blasthole Drill Jumbos for Underground Stoping

Anderson, Bernard F.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 8
Publication Date: Jan 1, 1982
INTRODUCTION In this chapter, the term "down-the-hole drill" (DTH drill) is used as a generic name that encompasses the various trade names and other references such as "downhole drill," "in-the-hole drill," etc. This chapter is limited to a description of DTH drills used in stoping large underground ore bodies. DTH drills differ from conventional drills by virtue of the placement of the drill in the drill string. The DTH drill follows immediately behind the bit into the hole, rather than remaining on the feed as with ordinary drifters. Thus, no energy is dissipated through the steel or couplings, and the penetration rate is nearly constant, regardless of the depth of the hole. Since the drill must operate on compressed air and tolerates only small amounts of water, cuttings are flushed either by air with water-mist injection or by standard mine air with a dust collector at the collar. HISTORICAL DEVELOPMENT Mine managers have long known the economies enjoyed by quarry and open-pit operators in producing large quantities of ore. The savings are due primarily to the availability of massive equipment, capable of drilling large blastholes to reduce the amount of drilling, increase the fragmentation, reduce secondary blasting, and im¬prove the flow of the product. In an attempt to reduce underground mining costs, various methods are used for long-hole drilling, includ¬ing standard pneumatic percussion drifters and diamond drills. These systems have their shortcomings; percus¬sion drills are limited to small hole sizes and they ex¬perience excessive deviation and significant loss of energy with increased depth. The diamond drills provide deeper and straighter holes, but only at high cost. Both systems suffer from high noise levels, low penetration rates, and poor explosives distribution, among other problems. When the mining companies approached the drill manufacturers for a compact and portable large-hole jumbo for underground use, they specified not more than 1 % deviation on 60 m (200 ft) of vertical hole and a penetration rate of 15 m/h (50 fph). On Dec. 23, 1960, a test unit was placed in service in Montana and met the performance criteria. Though lacking the so¬phisticated features available today, the economies of surface blasting were brought underground. Unfortunately, the first system did not gain immedi¬ate acceptance in the industry. Among the factors con¬tributing to its demise were resistance to change, the need to alter development methods for the ore bodies, and a lack of flexibility in moving the rig from setup to setup and from level to level. In 1972, the mining industry again challenged the drill manufacturers to provide a workable jumbo that would combine compactness, ease of maintenance, relia¬bility, and efficiency, all on a self-propelled chassis. The manufacturers responded by providing improved jumbos, which have been accepted with enthusiasm throughout the mining industry. Today's DTH jumbos are capable of drilling from 100 to 200 mm (4 to 8 in.) diam holes that can be reamed to even larger diameters. The holes can be drilled to depths of 150 m (500 ft), depending upon ground conditions and the capability of the jumbo to retrieve the steel and drill. Fig. 1 illustrates a typical DTH jumbo. APPLICATIONS The uses to which DTH drill jumbos have been put are quite numerous, with new uses being found regularly. For convenience, these uses may be classified as primary blastholes and nonblasting holes. Primary Blastholes The original purpose for the development of the DTH jumbo was for drilling primary blastholes that could be mined by open-stope methods. Prior to the advent of the DTH jumbo, extensive development was required before production drilling could begin. Sub¬levels were required to allow access for column-and-arm stopers or ring/fan jumbos, to the extent necessary based on the effective penetration of the chosen machine. With the DTH jumbo, the mine engineer is able to reduce preproduction time and development costs. How¬ever, the most significant saving results from an im¬proved cost per ton of broken ore in the production phase. To utilize a DTH system, only a top heading and drawpoints are necessary. The top heading can be the width of the ore body with a 3.7-m (12-ft) back. A drop-raise pattern is drilled and shot to begin the stoping operation, providing a free face for subsequent blasting. A typical layout is illustrated in Fig. 2. The advantages of this system include: 1) Drilling and blasting are independent operations, and blasting can be performed at a rate congruous with the mine's ton-per-day capacity. 2) The development layout is simplified. 3) Good explosive distribution is achieved, provid¬ing more uniform fragmentation. 4) Environmental conditions for operators are im¬proved, including improved safety with all work directed downward (not overhead), lower noise levels, little fog, and a reduced dust count. 5) Improved production per manshift. 6) Simplified and easier operator work cycles. 7) Reduced cost per ton of product. 8) Fewer holes lost due to ground shifts. Nonblasting Holes With the introduction of the compact DTH jumbos, other practical uses became apparent, including the drilling of: 1) Holes for sand fill, from level to level and from level to stope. 2) Drain and dewatering holes. 3) Power and communications cable holes.
Full Article Download:
(569 kb)