Percussion-Drill Jumbos

Roos, Henry H.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 16
Publication Date: Jan 1, 1982
NTRODUCTION In the mining industry, a "drill jumbo" is a drilling unit equipped with one or more rock drills and mounted on a mechanical conveyance. Jumbos range from single¬drill ring drills mounted on simple steel skids to sophisti¬cated multiple-drill units mounted on diesel engine powered carriers and equipped with automatic controls and sound-abatement cabs. Individual types of jumbos usually are designed for specific tasks such as fan drilling in sublevel caving operations. Some units, such as development jumbos, can be utilized for several functions in addition to their normal applications, e.g., for production drilling in room-and-pillar operations, stoping in cut-and-fill mining, etc. Mine operators can purchase individual components from manufacturers, assembling these components into a jumbo suitable for specific conditions. However, this requires that mine personnel have good engineering and mechanical abilities. Although manufacturers of jumbos maintain facilities for designing machines to meet con¬ditions created by new mining methods and unusual ap¬plications, the cost of the engineering and experimental work for new types of jumbos should be evaluated in terms of both costs and benefits; it may be advantageous to plan the mining operation so that existing and proven units can be utilized. GENERAL SELECTION CRITERIA Since the operating conditions vary in underground mines, the design of a jumbo must be selected to cope with the individual characteristics of the mine. The necessary considerations include access space into the working areas, grades expected to be encountered, radii of the curves, ambient temperatures, the characteristics of the rock, the acidity or alkalinity (pH rating) of the mine water, etc. Access to Mine Workings The mine workings must be accessible to the selected jumbo. Frequently, a jumbo must be disassembled at least partially to pass through the mine shafts. There¬fore, a bolted construction allowing disassembly into pieces of suitable size and weight is desirable in most applications. Type of Undercarriage Generally, a crawler-type undercarriage should not be used in trackless mines having acidic mine water. The acidic water causes an electrolytic action between the individual crawler parts and causes rapid corrosion and early failures. Propulsion A two-wheel drive on a pneumatic-tired jumbo is marginal for grades exceeding 12%. A four-wheel drive unit with good weight distribution is capable of operat¬ing on grades of up to 35%. At least 30% of the gross vehicle weight (GVW) should be carried on the steering axle; otherwise, the steering tires may not have sufficient traction on loose road surfaces and may "plow" instead of steer. To assure stable operation in mines with steep grades, the height of the center of gravity of the jumbo should be considered. It should not make the unit prone to rolling over on the steep grades that may be encoun¬tered. Turning Ability In confined working areas, a skid-steering or crawler unit has the best maneuverability. An articulated carrier is preferable when base-rotated parallel booms are being utilized. A rigid-frame jumbo with automotive steering is compact and economical, having lower maintenance requirements than the other two types. However, the turning radius of a rigid-frame unit is wider than either the skid-steering or articulated units, and this wider turning radius may be detrimental in mines with narrow drifts. JUMBO COMPONENTS Rail Undercarriages A mine with a rail-transportation system generally utilizes drill jumbos that are mounted on rail-type under¬carriages. With a light load and good weight distribu¬tion, this carrier may consist of a simple two-axle four-wheel platform onto which the boom-mounting brackets are attached. As the depth of the round and the penetration rates increase, the weight of the equip¬ment installed on the chassis also increases. The greatest problem with a heavy overhung load is balancing the carrier; a three-boom unit may require a substantial amount of counterweighting to maintain an acceptable 70% to 30% axle-load balance. Although lengthening the wheelbase helps balance the unit, a long wheelbase increases the turning radius, often creating problems on curves and sometimes requiring a swivel truck-type chassis. A good rule of thumb for a simple four-wheel undercarriage is to maintain a wheelbase length to track gage-width ratio that does not exceed 2.5 to 1.0. For a larger ratio, a swivel truck should be utilized. Swing-out outriggers or roof jacks help keep a jumbo in place during the drilling cycle. Usually, a rail-mounted jumbo is not self-propelled. Instead, it is maneuvered into place by a locomotive. Occasionally, several headings are being advanced in close proximity, and a self-propelled jumbo is con¬venient. In electrified mines, such a jumbo utilizes conventional battery-powered traction gear; in dieselized mines, hydrostatic drive components offer good flexi¬bility. The tractive power requirements of a typical rail jumbo may be calculated from the formula: HP = [(RR + GR) X Sl/[33,000 X Em X Eh]
Full Article Download:
(1171 kb)