Application of the Simplex Method to the Optimal Adjustment of the Parameters of a Ventilation Network

Kamba, G. Mbuyi
Organization: Society for Mining, Metallurgy & Exploration
Pages: 5
Publication Date: Jan 1, 1995
Literature is rather abundant on the topic of steady-state network analysis programs. Many versions exist, some of them have real extended facilities such as full graphical manipulation, fire simulation in motion, etc. These programs are certainly of great help to any ventilation planning and often assist the ventilation engineer in his operational decision making. However, what ever the efficiency of the calculation algorithms might be, their weak point still is the overall validity of the model. This numerical model, apart from maybe the questionable application of some physical laws, depends directly on the quality of the data used to identify its most influencing parameters such as the passive (resistance) or active (fan) characteristic of each of the branches in the network. Considering the non-linear character of the problem and the great number of variables involved, finding the closest numerical model of a real mine ventilation network is without any doubt a very difficult problem. This problem, often referred to as the parameter adjustment problem, is in almost every practical case solved on an experimental and "feeling" basis. Only a few papers put forward a mathematical solution based on a least square approach as the best fit criterion. The aim of this paper is to examine the possibility to apply the well-known simplex method to this problem. The performance of this method and its capability to reach the global optimum which corresponds to the best fit is discussed and compared to that of other methods.
Full Article Download:
(250 kb)