Ball Mills

Rowland, C. A.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 19
Publication Date: Jan 1, 1985
Introduction Ball mills are lined drums, either cylindrical in shape or modified cylinders that have either one or both ends of the shell, consisting of conical sections, that rotate about the horizontal axis. Fig. I I shows a cylindrical mill, Fig. 12 a conical ball mill, and Fig. 13 a Tricone ball mill (Hardinge tradename). Steel or iron grinding media, generally in the shape of spheres, are used to grind the ore to the specified product size. In order to obtain more contact area for grinding and to simulate the shape of worn balls, balls have been made with two concave surfaces diametrically opposite each other. Some concentra¬tors, such as Erie Mining Co., have used slugs cut from worn and broken rods to supplement the balls in ball mills and save money otherwise lost as rod scrap. Cylindrical and conical shapes have been tried instead of balls, but balls remain as the most common shape grinding media used in ball mills. Ball mills were a logical development from the earlier pebble mills that used hard natural pebbles such as flint pebbles or sized ore pebbles (obtained from the ore itself) as grinding media. In the early 1900s36 it was found that when cast iron or cast steel balls were used in place of flint or ore pebbles, the mills drew more power and gave greater production capacity. Advances in technology have resulted in the manufacture of ball mills up to 18 ft diam inside shell, drawing up to 8,000 hp. Ball mills are employed to grind ores, especially the more abrasive ores, to finer sizes than can be produced economically in other size¬reduction machines such as roll crushers, hammer mills, and impactors. Ores can be ground dry-dry grinding-or in a slurry-wet grinding-using ball mills. Dry grinding nominally refers to less than I %v moisture by weight. If the moisture content increases by several percent, dry grinding capacity is significantly reduced as shown in Table 17. The usual range of solids content in wet ball-mill slurries is from 65 to 80% by weight. Wet grinding is used to prepare the feed material for unit opera¬tions such as flotation, magnetic separation, gravity concentration, and leaching that require a slurry of liberated valuable mineral and unwanted gangue particles. Dry grinding" is employed to produce feed for agglomeration, pelletizing, and pyrometallurgy processes that require feed that is dry or nearly so and for finely ground industrial mineral products used in the dry state. Dry grinding is also used when minerals cannot be dewatered economically to the required moisture level or when the ground product reacts unfavorably with liquids. For example, cement clinker must be ground dry. Dry grinding requires about 30% more power than wet grinding for comparable size reduction .28 The total power required in a dry¬grinding ball-mill plant including drying may be double that required for a wet-grinding plant. Grinding-media and liner consumption in dry grinding reported as pounds of metal consumed per kilowatt-hour per ton of ore" is 10-20% of that used in wet grinding. The Wabush pellet plant, Point Noire, Que.3o reported ball consumption dropped from 6.3 lb per ton of ore ground to 2.5 lb per ton of ore ground when they converted from wet to dry grinding, and a 30% increase in power consumption. A number of comparisons made on wet and dry grinding of cement raw materials show metal consumption in dry grinding to be 10% of that in wet grinding. The capital costs for wet grinding are generally lower than for dry grinding. When thickening and filtering of the wet-ground product are required, dry grinding may have a lower capital cost. With open-circuit grinding the ball-mill discharge passes directly to the next processing step without being screened or classified and no fraction is returned to the ball mill (Fig. 14). In closed-circuit grinding the ground material, undersize, in the ball-mill discharge is removed either using a screen or a classifier with the oversize being returned to the mill for additional size reduction (Fig. 15). The over¬size material that is returned to the ball mill is called the circulating load. Open-circuit ball-mill grinding requires more power than closed¬-circuit grinding for products containing similar amounts of top-size material. The less the amount of oversize allowed in the product, the longer the ore must remain in the ball mill when grinding in open circuit. This increases the production of extreme fines and thus the consumption of more power. The power required for open-circuit ball-mill grinding can be estimated using the multipliers listed in Table 18 and knowing the power required for closed-circuit grinding to yield the desired product particle size. For example, assuming the desired grind size is 90% passing some specific top size, open-¬circuit grinding would require 1.40 times the power to achieve similar results as closed-circuit grinding.
Full Article Download:
(2302 kb)