Room-and-Pillar Method of Open- Stope Mining - Open Stope Mining at the Magmont Mine, Bixby, MO

Bates, G. D.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 4
Publication Date: Jan 1, 1982
INTRODUCTION The Magmont mine is a joint venture of Cominco American Inc. (operator) and Dresser Minerals, Inc. The mine-mill operation is located approximately 160 km (100 miles) southwest of St. Louis, MO, in what is commonly referred to as the "Viburnum Trend.” The Magmont mine is designed for a production rate of 3810.2 t/d (4200 stpd) on a 5-day week, three shifts per day basis. Initial production began in 1968. The mine is open stope, room-and-pillar, and essentially horizontal along the trend of the ore body. Briefly, the main geological structure can be described as a brecciated graben bounded by reverse faults. The ore body in cross section is shaped like a bell curve with some lateral extension at the lower part. Presently outlined ore is 609.6 to 762 m (2000 to 2500 ft) in width and 2133.6 m (7000 ft) in length. The ore varies in thickness from 4.87 m (16 ft) on the fringes to an average of 27 m (90 ft) in the high ore areas bounded by the reverse faults. Lead is the primary metal with zinc and copper secondary. MINE DESIGN The basic design of open stope, room-and-pillar mines has been described by several writers and need not be repeated here. (Anon., 1970; Bullock, 1973; Casteel, 1972; Christiansen et a]., 1970; and Lane, 1964) This discussion covers the mining sequence as applied to the particular problems at the Magmont mine, the use of equipment, and deployment of the work force. In the upper portion of the Magmont ore body is a layer locally called the False Davis shale. This layer lies below the true Davis shale, is normally interbedded with dolomite, is of varying thickness, and if mineralized, is included in the top pass of the mining sequence. In thick ore areas this layer will be 2.13 to 2.43 m (7 to 8 ft) in thickness and will occur in the upper portion of the pillars. Due to its incompetency the presence of this False Davis layer is of primary concern in mine planning and operation. Mining areas are divided into three basic groups by ore thickness. First are areas of ore up to 6.09 m (20 ft) in thickness. These areas are below the False Davis shale and are mined single pass with drill jumbo. Second are those areas up 13.71 to 15.24 m (45 to 50 ft) in height. The first 4.87-111 (16-ft) Pass is taken at the top of the ore and the back and pillars secured. Benching the lower portion(s) in 4.57 to 4.87-m (15 to 16-ft) passes is then done with either a drill jumbo drilling horizontally or a crawler drill drilling vertically. Normally these areas are below the Table 1. Productivities per Manshift False Davis shale. These areas may also be mined by back slashing, or overhand benching, where the first 4.87-m (16-ft) pass is taken at the base of the ore and successive 4.87- m (16-ft) passes are taken upward. A minimum amount of back slashing is done at Magmont since it requires repetition of roof control on each pass and roof control is the single largest stoping cost at Magmont. Ore left to provide a working platform oxidizes and is coated by oil spills thus reducing metallurgical recoveries. The third mining area is over 15.24 m (50 ft) in height UP to a maximum of 40.23 m (132 ft) and will encompass the False Davis shale. These areas are mined by first driving +15% inclines to the top of the ore body. The top pass is mined and the back is bolted and roof mats installed as a matter of standard practice to minimize roof problems as mining progresses downward. Once the back and pillars on the top pass are secured, benching begins on successive passes with either the drill jumbo or crawler drill. Pillars on all successive passes below the top pass are secured as necessary. While benching progresses below the top pass, the pass at the base of the ore body is mined leaving a sill of 4.57 to 7.62 m (15 to 25 ft) in thickness to be removed with the crawler drill in a retreating manner. Rooms are mined on a 1.57 rad (90") grid pattern to insure alignment of pillars where multiple passes are taken. Pillars are designed on a 17.98-m (59-ft) spacing with rooms up to 10.66 m (35 ft) in width. Heading widths are wide enough for the mobile equipment to turn without additional allowance for curves. The result is a flexible layout which provides a maximum number of headings available for high extraction rates and grade control. PRODUCTION Incentive Bonus Incentive bonuses play an important part in the mine production at Magmont. Production crews are trained to perform only one of the mining functions of drilling, blasting, mucking. or roof bolting. This specialization, or functionalization, is augmented by development to open all possible stoping areas as early as possible in the life of the mine. This insures that each crew will have enough headings to perform its specialty. The incentive bonuses increase exponentially as output increases. The lucrative incentive bonus coupled with the specialization of the production crews and proper mine development have combined to give the high productivities shown in Table 1. Development crews perform all mining functions in their area. The incentive bonus is paid on a per foot basis, Crews on different shifts working the same heading share equally in the bonus proportional to their contract hours worked.
Full Article Download:
(258 kb)