Mechanics of Horizontal Movements Associated with Coal Mine Subsidence in Sloping Terrain Deduced From Field Measurements

Mills, Ken W.
Organization: International Conference on Ground Control in Mining
Pages: 8
Publication Date: Jan 1, 2014
The ground movements associated with underground coal mining and, in particular, longwall mining, are recognised to include horizontal subsidence movements, but the mechanics of the processes that cause these horizontal movements are not well understood. Over the last two decades, three-dimensional subsidence monitoring has become routine in Australia and has provided a wealth of measurements of horizontal movements caused by mining subsidence. These measurements and other sub-surface observations allow the processes that cause mining-induced horizontal movements to be inferred and, subsequently, verified. In this paper, the mechanics of the processes that cause horizontal movements, particularly those in sloping topography, are described and discussed on the basis of field observations. There are several processes recognised to generate horizontal subsidence movements. In flat terrain, systematic horizontal movements cause the surface to move initially toward the newly created goaf and, subsequently, in the direction of mining. Tectonic energy stored as horizontal stress is released by mining, and, when the horizontal stresses are high, the magnitude of this horizontal stress relief movement is large enough to be perceptible for some kilometres from the panel. In sloping terrain, there is an additional component of horizontal movement that occurs in a down slope direction. This movement, sometimes referred to as valley closure movement, has a magnitude that is typically much greater than systematic or stress relief movements.
Full Article Download:
(1898 kb)


Additional chapters/articles from the SME-ICGCM book 33rd International Conference on Ground Control in Mining

Development of the 3D Numerical Modeling of Roof Bolts for S
Development and Application of the TT Anti?Friction Washer f
A Comparison Between ARMPS and the New ARMPS?LAM Programs
Multi?stage Testing Procedures, Verification, and Results fo
The Caterpillar HW300 Quickscan
Underground Mining Technology in Chinese Coal Mines
Rock Characterization Using Time - Series Classification Alg
Ground Control in the Underground Coal Mines of Colombia
Investigating the Contributing Factors to Rib Fatalities Thr
Analyses of De-Confinement Mechanisms of Unstable Failures i
Photogrammetric Monitoring of Rock Mass Behavior in Deep Vei
Development of An Enhanced Methodology for Ground Movement P
Estimating Coal Strength Based on Historical Laboratory Test
Experimental Observations and Interpretations on Fracture Ne
Overburden Failure Characteristics of Extra?Thick Seam Using
FlexKnot: An Innovation in Roof and Rib Surface Control
Learning Our Geotechnical Limits and Pushing Our Longwalls T
Three Dimensional Analysis of Strain and Ground Surface Disp
Use of a Plate Loading Device to Quantitatively Evaluate Wea
Ground Control Design Considerations for Reducing Longwall?I
Mechanics of Horizontal Movements Associated with Coal Mine
Roof Geotechnical Properties for Roof Control Purposes in Il
Update: Analysis and Case Study of Impact?Resistant Steel Se
The Implementation of Rock Mechanics Into a Multiple Level L
A Case Study for Multiple Seam Calibration of LaModel in Bum
A Liquid Settlement System for Measuring Roof Sag During Dev
Ground Response As a Longwall Advances Into a Backfilled Rec
A Case Study of a Low Overburden Longwall Recovery with Pre?
To What Extent the Mechanical Properties of Coal Play Role i
Mine Water Vs. Drinking Water?Technical Execution and Legal
Mitigation of a Massive Sandstone Channel?s Impact on Longwa
Study on the Modified Model of Probability Integra Method
Multi?Seam Mining Over Old Workings with Small Pillars - A C
Development of Mechanized Ground Support Installation Equipm
Understanding and Optimizing the Performance of Passive Prim
Validation of Overburden Failure Zone in Complex Extra Thick
The Impact Factors of Overburden Movement in Longwall Mining
Fiber Reinforced Polymer Rockbolts for Ground Control in a S
Introduction of a Measurement Based Ground Control Managemen
Application of Various Probing Methods for Rock Characteriza
Risk Analysis and Risk Ranking in Tunneling: A Case Study
Development of Road Header Roof Bolting Module
Combined Effects of Rock Bedding Orientation and Topography
Challenges of Room and Pillar Mining at 900 M Depths in the
Sandy Creek Waterfall?Case Study of Successful Management of
Overburden Strata Movement for the Longwall Mining of Shallo
Rock Slope Stability Comparison Between Deterministic and Pr
Stability of a Gateroad Used Simultaneously for Two Retreati
Meeting the Challenges of Floor and Sidewall Strata Control
Strata Control Investigations During Fully Mechanized Coal P
Strata Movement Around Large Mining Height Face Area with Fu
A Case Study of Topography?Related Stress Rotation Effects o
Introduction of a New Superior Coating on Ground Support Pro
Suspension Designs Required in the Logical Framework
A Novel and Effective Method to Develop Tension in a Roof Bo
Time Dependent Mining Induced Subsidence Measured by Differe
Tracking and Tracing in Terms of Transportation Logistics of