Mapping Hazards With Microseismic Technology To Anticipate Roof Falls - A Case Study

Iannacchione, Anthony
Organization: International Conference on Ground Control in Mining
Pages: 7
Publication Date: Jan 1, 2004
As the amount of new fractured surfaces or "damaged rock layers" within roof rock increases, the stability of the rock mass decreases. While direct measurements of this phenomenon are not easily made, there is good circumstantial evidence to support this hypothesis. For example, it is common to observe increased cracks or fractures in the immediate mine roof rock before a roof fall. Likewise, roof drill holes placed in areas that later fail often reveal increased numbers and/or separations of fractures within the rock column through time. And finally, the frequency of microseismic activity, representative of rock fracturing, increases before a roof fall. For this study, more than 700 microseismic emissions were collected from two underground limestone mine roof fall areas in southwestern Pennsylvania. Microseismic events were located and magnitudes determined using the moment magnitude technique. Moment magnitude is based on the event seismic moment, which is a measure of the seismic deformation. The amount of new fracture surface length was calculated based on the stored strain energy within the rock prior to fracture. In the two case studies presented, a significant amount of microseismic activity was observed as much as two days before the first signs of failure in the roof fall areas. Additionally, results from this analysis reveal much about the behavior of strata prone to failure and allows for the construction of hazard maps based on microseismic emissions. The potential use of this technique as a means of anticipating roof falls is analyzed and discussed.
Full Article Download:
(2067 kb)


Additional chapters/articles from the SME-ICGCM book 23rd International Conference on Ground Control in Mining (ICGCM) 23rd

Geomechanical Criteria of Longwall Face Support Selection at
Rock Fracture, Caving and Interaction of Face Supports Under
Effect of the Approaching Longwall Faces on Barrier and Entr
Computer Simulation of Ground Behaviour and Rock Bolt Intera
lnterpanel Barriers for Deep Western U.S. Longwall Mining
Application of Yieldable and Cuttable Pump Crib in Longwall
Field Testing of a Real Time Roof Mapping Drilling Display S
Problems in "Void" Detection in Coal Mine Water Hazards
Violent Coal Pillar Collapse -A Case Study
Stooping Low Safety Factor Pillars at Goedehoop Colliery - 1
Laboratory Strength Testing of Coal from Selected Illinois S
Downhole Overcoring Stress Measurement at a Western Undergro
Effect of In Situ Stresses on the Stability of Coal Mine Dev
SOMA: A New Method to Calculate the Operative Stress Field:
Numerical Modeling for Increased Understanding of the Behavi
Evaluation of Rockburst Hazard from Core Testing
Investigation of Electromagnetic Emissions in a Deep Undergr
Development and Application of Geotechnical and Rockmechanic
Laboratory Testing of Rib Straps
The New Two-Dimension LaModel Program
Risk Assessment: Multiseam - Single Seam Mining
A Method To Determine Expander Spacing For Steel Pipelines I
A Case Study Of Abandoned Mine Subsidence At Dominion, Nova
Spatial Trends In Rock Strength - Can They Be Determined Fro
Development And Demonstration Of An Alternate Mining Geometr
Evaluation Of Polyurethane Injection For Beltway Roof Stabil
Application Of Ground Penetrating Radar To Evaluate The Exte
A Risk Assessment Tool For Open Cast Mining In South Africa
Analysis Of Practical Ground Control Issues In Highwall Mini
Preventing Falls Of Ground In Coal Mines With Exceptionally
Geo-Mechanical Property And Failures Of Weak Roof Shales In
Eclipse System Bolting In The Illinois Basin
Variation In The Load Transfer Of Fully Encapsulated Rockbol
Bolt Load Changes During Initial Face Advance And Cross-Cut
Coal Mine Primary Support Selection: Tension Versus Non Tens
Improving Stope Support At Modikwa Platinum Mine
3D FEM Simulation For Fully Grouted Bolts
An Investigation Into The Effectiveness Of Support Systems C
Hydraulic Prestressing Units: An Innovation In Roof Support
Improving Roof Truss Performance
Coal Combustion Byproducts-Based Artificial Mine Supports -
The Influence Of Horizontal Stress On Pillar Design And Mine
Investigation Of Pillar-Roof Contact Failure In Northern App
Mapping Hazards With Microseismic Technology To Anticipate R
Practical Detection Of Underground Mine Roof Failure
Heat-Imaging Experimental Study Of Reducing Local Gas Accumu
Microcirculation Theory Analysis Of Spontaneous Combustion O