Shear Mechanism for Mining-Induced Fractures Applied to Rock Mechanics of Coal Mines

White, Brian
Organization: International Conference on Ground Control in Mining
Pages: 7
Publication Date: Jan 1, 2002
Two examples of en echelon mining-induced fractures seen in hardĀ¬rock mines provided a basis for inferring that fracture zones and bedding plane separations immediately surrounding mine openings are promoted by oblique shear into the openings. It is hypothesized that initial fractures or separations form at the comers of openings as a result of high stress and physical constraint on the rock's ability to deform elastically toward the opening. These conditions result in a locally preferred direction of shearing. The shearing, in turn, generates tensile stress that initiates a progression of systematically offset fractures approximately parallel to the direction of greatest compressive stress. The fractures or bedding separations create tabular rock layers that amplify shearing displacement through bending and dilation. Such shearing effectively reduces and redistributes the compressive stress, but significant dilation is an inevitable consequence. The combination of dilation and shearing and the progressive development of fracture zones have important implications with respect to ground support. The concept of mining-induced fractures forming as a result of shear is illustrated by two examples from coal mines. First, fracĀ¬tures seen at longwall faces probably result from shear associated with subsidence. The fracture zone that develops approximates or possibly defines the draw angle of subsidence. As the face advances, fractures extend downward along the lower edge of the fracture zone, while upper extensions of the fractures are pressed closed. Fracture zones in entry roofs provide a second practical example. Here, mining-induced fractures typically follow bedding planes. The shear zone model suggests that the first bedding separations develop near the edges of the roof and successive separations progress upward and toward the center. However, if the direction of greatest stress is inclined with respect to the roof, a fracture or bedding separation zone may propagate from one side only and also extend higher. Because coal ahead of the face provides some support against lateral shear deformation, bedding separation is inhibited near the face. Rock bolts installed close to the face ultimately become more strained and bent than bolts installed a few meters from the face, and bolts installed through the more remote part of a separation zone may ultimately experience the greatest tensile and bending strains. This model is supported by field data documenting progressive bolt failures that rapidly propagated downward across the roof during face advance.
Full Article Download:
(1752 kb)


Additional chapters/articles from the SME-ICGCM book Proceedings 21st International Conference on Ground Control in Mining

Pre-Driven Experimental Longwall Recovery Room Under Weak Ro
Longwall Mining-Induced Abutment Loads and Their Impacts on
Influence of Structural Stress Concentration and Structural
The NIOSH Shield Hydraulics Inspection and Evaluation of Leg
Study on Top-Coal Loss and the Optimum Drawing Interval of L
Stress Measurements for Safety Decisions in Longwall Coal
Re-Use of Rectangular Bolted Roadways in a Cover Depth > 100
Numerical Modeling of the Gob Loading Mechanism in Longwall
Deep Cover Pillar Extraction in the U.S. Coalfields
Evaluation of Pillar Recovery in Southern West Virginia
A Case History Investigation of Two Coal Bumps in the Southe
A Linear Coal Pillar Strength Formula for South African Coal
Anchorage Pull Testing for Fully Grouted Roof Bolts
Comparison of Some Aspects of Bolting Mechanisms Between Ful
Eclipse System Improves Resin Anchored Rebar Bolting
Design Considerations for Tensioned Bolts
Field Testing of the Fully Grouted Thrust Tensioned Bolts
Improvement in Pre-Tensioning of Strand Bolts in Australian
The Introduction of Roof Bolting to U.S. Underground Coal Mi
Support of Coal Mines in the United Kingdom
The Use of NDT Methods to Determine the Condition of Rockbol
Rockbolted Support of Retreat Longwall Gateroads at 1000m De
Roof Screening: Best Practices and Roof Bolting Machines
Numerical and Physical Modeling as Planning Tools for Rockbo
Stone Mine Design in Highly Fractured Rock
The Importance of Underground Stone Mine Roof Geology
Utilization of Ground-Penetrating Radar to Determine Roof Co
An Examination of the Loyalhanna Limestone's Structural
Highwall Stability in an Open Pit Stone Operation
Overview of Safety Considerations with Highwall Mining Opera
Highwall Monitoring to Combat Rockfall Accidents at Opencast
Seepage and Reinforcement Behavior of Grouting Into Slaking-
Floor Heave in Shallow Room-and-Pillar Mining
Analysis of a Stability Problem in an Underground Coal Mine
Comparison of Acoustic Emission and Stress Measurement Resul
Acoustic Scanner Analysis of Borehole Breakout to Define the
Estimating Rock Strengths Using Drilling Parameters During R
New developments with the coal mine roof rating
Application of geotechnical and geophysical parameters to im
Development of a Risk Rating System for Use in Underground C
Empirical and analytical design of large openings at a propo
Shear Mechanism for Mining-Induced Fractures Applied to Rock
Evaluating Techniques for Monitoring Rock Falls and Slope St
Developments in Sealant Support Systems for Ground Control
Stability Control of Clusters of Deep Openings Around Shaft
The Use of Pneumatic Stowing in Germany Considering Subsiden
A 3-D Semi-Analytical Method for Subsidence Prediction and S
Theory and Technology of Mining Subsidence Control by Grouti
Surface Subsidence Due to the Combined Effects of Undergroun