Coal Mine Seismicity And Bumps: Historical Case Studies And Current Field Activity

Ellenberger, John L.
Organization: International Conference on Ground Control in Mining
Pages: 9
Publication Date: Jan 1, 2000
The National Institute for Occupational Safety and Health (NIOSH) has continued the research role of the former U.S. Bureau of Mines to develop techniques that will reduce the hazards in the mining work place associated with coal bumps. Current research focuses on both analyzing historical seismic data from bump-prone operations and utilizing a mine-wide seismic network to investigate the exact strata failure mechanics associated with bump-prone geology. The anticipated outcome of this research will be reduced bump incidences through advanced engineering concepts and designs which implement the new understanding of strata behavior. The analysis of the historic seismic data consists of correlating observed mining seismicity with the geologic and geometric parameters at the sites. The primary seismic parameters are the timing, location and magnitude of a recorded seismic event. These parameters are correlated with such mining parameters as: the overburden, the size of the immediate gob, the size of the district gob area, etc. This detailed analysis of historical seismic data has provided an informative quantifiable relationship between many of the specific mining parameters and the induced seismicity. The second aspect of the coal bump research is the instrumentation of an appropriate field site to determine the main roof, floor, and gob behavior associated with hump behavior. The chosen field site is a deep-cover longwall mine with competent geology in a historically bump-prone area. The primary field instrumentation is a three-dimensional, full-waveform, seismic array with both surface and underground sensors surrounding an active multi-panel district. The purpose of this seismic array is to determine the timing, the exact location, and the mechanism (tensile fracture, bedding plane slip. etc.) of the failure of the strata surrounding the active and multi¬panel gobs. The preliminary results presented in this paper help to define the strata failure areas around the longwall panel.
Full Article Download:
(2294 kb)


Additional chapters/articles from the SME-ICGCM book Proceedings 19th International Conference On Ground Control In Mining

An Approach To Identifying Geological Properties From Roof B
Field Experience Of Measuring The Acoustic Energy From A Ham
Advancements In Reflective Seismic Tomography For The Locati
Longwall Geomechanics, An Australian Perspective
Moonee Colliery: Renewing The Economic Viability Of A Mine U
Successful Application Of Hydraulic Fracturing To Control Wi
Pillar Mining And Longwalling Below Massive Roof Strata: Geo
High Capacity Tensioned Cable Bolts For Tailgate Support
Single Point And Full Scale Laboratory Testing Of Timber Cho
Optimizing Secondary Roof Support With The NIOSH Support Tec
The Use Of Cribless Tailgates In Longwall Extraction
Five Stress Factors Conducive To Bumps In Utah, USA, Coal Mi
Development Of Stress Measurement Techniques In Bump-Prone C
Coal Mine Seismicity And Bumps: Historical Case Studies And
Multi-Scale Assessment Of Coal And Gas Outbursts Based On Fr
Horizontal Stress: The Root Of All Evil?
Utilizing The ?Advance And Relieve? Method To Reduce Horizon
Regional Horizontal Surface Displacements Due To Mining Bene
Prognosis And Control Of Mining Induced Surface Subsidence A
Prediction Of Subsurface Subsidence For Longwall Mining Oper
Development Of A Statistical Technique For Assessing Sandsto
Evaluation Of Surface Subsidence Potential Along A Pipeline
Roof Monitoring In Limestone Mines-Experience With The Roof
Site Characterization For Planning Underground Stone Mines
Potential Problems Related To Mining Under Or Adjacent To Fl
Mine Planning For Longwall And Pillar Retreat Panels Subject
Optimization Of District-Wide Mine Layout In Multi-Seam Mini
Application Of Bolt Design Criteria At Galatia Mine
The Utilization Of Rockbolting Technology And Monitoring Tec
Rockbolting For Highly Stressed Roadways
Evaluation Of Measurement System For Monitoring The Stabilit
Quality Management For Grouted Rockbolts
Evaluating Anchorage Mechanisms Of Fully Encapsulated Rock B
INST√°L CableOx: A New Tensionable & Corrosion Resistant Cabl
Rock Reinforcement Longevity
Progress In The Development Of A Roof Bolt Design Methodolog
Case Studies Of Progressive Pillar Failure In Two Mines Usin
Jointing Effects On Pillar Strength
Impact Of Vertical Stress On Roadway Conditions At Dartbrook
Stepwise Support Technology For Extremely Soft Rock Roadway
Mobile Roof Supports For Pillar Retreat Mining
Three-Dimensional Simulations Of The Roof Behavior In Coal R
Roof Behavior In South African Coal Room And Pillar Panels
Extended Cut Out Distances In Continuous Miner Sections In S
Roof Control Analysis In North River Mine
Analysis Of The Seam Inclination Effect On Roof Stability
The Application Of Rock Mass Classification Principles To Co
Mining Geotechnical Benchmarking
Using The Point Load Test To Determine The Uniaxial Compress
The Influence Of Water Content On Strength Characteristic Of
Polymer Membrane Liners In Underground Coal Mines - Ground C
Applications Of Cement Grouting Method For Controlling Weak
Analysis Of Safety Aspects And Mining Practices For Effectiv