Simplified Pre-and Post-Processing Technique for Performing Finite-element Analyses of Deep Underground Mines

Filigenzi, Marc T.
Organization: International Conference on Ground Control in Mining
Pages: 9
Publication Date: Jan 1, 1997
Two of the major ground control safety issues confronting underground mine operations today are shaft pillar stability and the failure of rock around active mine openings. Failure of a mine shaft can lead to the entrapment of workers. Failure of rock around active underground mine openings can lead to roof falls, which in turn can result in worker injuries and fatalities. Finite-element analysis has proven to he a reliable method for predicting stresses and displacements around underground mine openings. However, this is a complex and time consuming technique and is not used as often as it could be in mine planning. The purpose of this paper is to demonstrate one technique developed at the Spokane Research Center that allows the user to create a finite-element model of a two-dimensional section of an underground mine in a relatively straightforward manner. This model is then used to calculate stresses, displacements, and safety factors around mine openings. With this information, mine planners can evaluate the stability of mine openings as well as the stability of pillars and mine shafts. This analysis will help develop mining sequences and layouts that minimize stresses in that section of the mine. This, in turn, should minimize the occurrence of shaft failure, roof falls, and other hazards associated with underground mining.
Full Article Download:
(2374 kb)


Additional chapters/articles from the SME-ICGCM book 16th International Conference on Ground Control in Mining (ICGCM)

Longwall Mining-Through the Backfilled In-Panel Entries at C
Performance of Various Standing and Cribless Tailgate Suppor
Measurement of Effects of Interaction and Influence on Mine
Effects of Longwall Mining on Streamflow in the Pittsburgh S
Longwall Surface Subsidence Prediction Through Numerical Mod
Long-term Subsidence Over Longwall Chain Pillar Systems and
Subsidence Prediction Influence Assessment and Damage Contro
Formation of Face Headings Using Stress Relief at Asfordby M
Significant Weighting Events on the Longwalls in the Phalen
Full-face Pressure Monitoring in Medium-Weak Roof Condition
Research on the Interaction Between Roof Strata and Shield S
Roof Instability of Longwall Face at Ikeshima Colliery
Gob Canopy Roof Support for Difficult Natural Conditions
Yielding Cement Roof Supports for Longwall Mining
Management of the Dynamic Phenomena of Rock Pressure in Unde
Continuing Development of Innovative Cable Support Systems
Extending the Limits of Strata Bolting by the Use of Flexibl
Implementation and Evaluation of Roof Bolting in MICARE Mine
New Methods and Technologies of Roofbolting in Australia Coa
New Design Criteria for Roof Bolt Systems
Control Mechanism of a Tensioned Bolt System in the Laminate
A Study of the Performance of Glass Fibre Rock Reinforcement
A Method for the Selection of Rock Support Based on Bolt Loa
Strategies for the Application of Rockbolting Technology to
A Troubleshooting Guide for Roof Support Systems
A Statistical Overview of Retreat Mining of Coal Pillars in
Full-Scale Performance Evaluation of Mobile Roof Supports
Effect of the Interchamber Pi Yield on the Surface Strains i
Salt Pillar Design Equation
Case Study of Conditions Observed During the Removal of a Hi
Case Study of the Effect of Stratigraphic Location on Roof S
Ground Control and the Inundation of the Retsof Mine
Weatherability Test of Rocks for Underground Mines
Shear Strength Characteristics of Soft Rock Joints Based on
Comparison of Pillar Strengths Calculated Using Empirical Eq
Effects of In-seam and Near-seam Conditions and Asymmetric P
Ground Control Worker Safety During Extended Cut Mining
Analysis of Extensometer Data from a Room Widening Experimen
Airbag Support for Ground Control in Thin Seam Coal Mining
Development of a Statistical-Analytical Approach for Assessi
Ground Control Criteria for Coal Reserve Optimization in Mul
Calcium Aluminate Kiders in Hard Rock and Coal Mining
Simplified Pre-and Post-Processing Technique for Performing