If you have access to OneMine as part of a member benefit, log in through your member association website for a seamless user experience.
Computer assisted finite element model analysis, originally developed to study stress distributions in aircraft, has been modified into a versatile mining program, that can be used to assist the engineer with predictions of mine subsidence. International Exploration, Inc. has developed an in-house finite element model program which incorporates a multitude of factors influencing mine subsidence such as mine design, physical rock properties, structure, faults, joints and topography. Finite element analysis of a mine model can mathematically determine the magnitude and direction of the principal stresses within each of the elements forming the model. By comparing the calculated in-situ stresses to the actual rock strengths, high risk regions within a mine can be identified. These potentially unstable regions of the mine can be allowed to fail within the model and the resultant stress redistribution and element movement calculated. Thus, the effects of the mine collapse at the surface can be predicted for the purpose of determining the potential damage, if any, that could occur to surface structures from deep mine failure. Stabilization materials can also be mathematically inserted into the model to design and analyze the effectiveness of subsidence prevention programs. Two examples are presented of the finite element program being used to predict mine subsidence at substantially different geologic and mining provinces in Pennsylvania. |