Surface Characterization Of Xanthate Adsorption On Molybdenite - Preprint 09-078

Zhang, J.
Organization: Society for Mining, Metallurgy & Exploration
Pages: 6
Publication Date: Jan 1, 2009
Surface characterization techniques, i.e. contact angle measurement, atomic force microscopy (AFM) surface force and surface imaging measurement, were applied to investigate the molybdenite surface in aqueous solution. It was shown that the cleaved basal surface of molybdenite was very hydrophobic with a 92 degree water contact angle. The non-polar component of the solid surface free energy is 50.52 mJ/m2 while the polar components are almost zero. The solid surface was not reactive and was only weakly charged at the pH 6. When the aqueous media changes from water to 1×10-4 M KEX solution, the measured contact angle, adhesion force and surface roughness all increase slightly. However, ethanol rinsing made the surface change back to the bare substrate. It was suggested that the hydrophobic chemical, i.e. dixanthogen, which was shown in the morphology of patches by the AFM image, physically adsorbed on the hydrophobic molybdenite surface through the hydrophobic interaction.
Full Article Download:
(840 kb)