Recent Developments in the Design of Large Size Grinding Mills

Knecht, Johann ; Patzelt, Norbert
Organization: Society for Mining, Metallurgy & Exploration
Pages: 8
Publication Date: Jan 1, 1998
INTRODUCTION Grinding mills have been used in the minerals processing industry for over 100 years. Their dimensions have grown continuously during this time. Besides increasing throughput rates of grinding plants due to the depletion of high grade ores, the lower specific in- vestment costs, as well as reduced operating and maintenance requirements are major reasons for this trend. When selecting new plant equipment one must consider that design principles which have proven their reliability on sizes of today's equipment do not automatically warrant a successful operation on the ever larger size of equipment. Modern calculation methods as for instance the Finite Element method already contribute considerably to the safe design of the huge equipment being built today and are a standard tool of the design engineers. More recently, modern computer programs are also being used in order to size the equipment to meet the process requirements. Today, two design principles are on the market - one which supports the weight of such a unit on trunnion bearings through cast conical endwalls and one which is supported through slipper pad bearings arranged at the circumference of the mill shell (Fig.1). The reason for the development of this alternative grinding mill design can be found in the past. During the sixties and seventies the growing sizes of ball mills with high LID ratios caused many mill failures due to cracked endwalls. The accuracy of the calculation methods as well as the quality standards for castings were not developed to a degree required for such kind of heavy equipment. One way to overcome these problems was the increase of the manufacturing quality standards as well as the introduction of the finite element method based on the analysis of the experience available. The biggest grinding mills being built today are large size SAG mills with cast conical endwalls and trunnion bearings (Fig.2). This is due to the fact that mill manufacturers who had come from the conventional ball mill design adopted these principles as well to their SAG mills. These grinding mills perform well without special concern to the operators. Other manufacturers overcame the problems as mentioned above by eliminating completely the heavy castings and trunnion bearings and the problems associated to it (Fig.1). This design was originally applied to ball mills for the mining and other industries. Due to the success of these shell supported ball mills, this design principle was also applied to SAG mills(Fig.3). Despite of the fact that the majority of today's grinding mills are built to the conventional design it is also interesting to have a look at this alternative. Principles which have proven their reliability on sizes of today's equipment do not automatically warrant a successful operation on the ever larger equipment if bigger mill sizes are realized only based on the pantograph principle. With growing grinding mill sizes, the mass and volume flows through the equipment increases rapidly. Thus it is very important not only to concentrate on the safe design of the structural components of the equipment but as well on the process requirements. The influence of the design on important process parameters of dry and wet grinding plants are discussed thereafter. It shall be shown how modern computer programs can assist in the optimization of the design of components in order to fulfil the operational requirements of such large size equipment. PROCESS REQUIREMENTS OF LARGE SIZE GRINDING MILLS Dry Grinding Mills The world's biggest ball mill is a dry grinding ball mill having a diameter of 6.2m and an overall length of 25,5m with a drive power of 11,200 KW or 15,000HP. This grinding mill dries and grinds gold ore at a rate of 500 tons per hour at a moisture content of up to 9,5%. As shown in Fig.4 this mill was built as a shell supported unit. In fact only this design principle allowed to meet the process requirement. This mill could hardly be built with cast conical endwalls due to the constraints of the trunnion bearings limiting the mill inlet. The following case shows how modern computer programs can help to meet the design criteria of the air system of large size dry grinding plants. For dry grinding plants, the gas flow through the SAG mill has to match the drying, as well as the material transportation require-
Full Article Download:
(281 kb)